Anatomy
Fact-checked

At TheHealthBoard, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What is Protease?

Helga George
Helga George

A protease is a member of a very large group of enzymes that have a variety of functions in the body. A primary one is as a digestive enzyme to process protein. Without protease, the body would not be able to digest the protein in food. Other types of proteases are involved in the regulation of cellular events, such as blood clotting. These are also called proteolytic enzymes or proteinases.

Proteins are long chains of amino acids that are held together by peptide bonds. Small fragments of proteins are known as peptides, and larger fragments are referred to as polypeptides. Enzymes that break down peptides are called peptidases.

Without protease, the body would be unable to digest the protein in food.
Without protease, the body would be unable to digest the protein in food.

Proteases are types of proteins that accelerate the degradation of others. They differ in the manner in which they carry out this activity. Exopeptidases cleave off terminal amino acids and nibble away at proteins. They break down peptide bonds to release amino acids. In contrast, endopeptidases act within the protein, and also cleave peptide bonds, producing polypeptides as the result of their activities.

The stomach contains the digestive protease pepsin.
The stomach contains the digestive protease pepsin.

There are several classes of proteases, depending on the type of amino acid at the site where the reaction occurs, and any additional molecule needed for activity. For instance, many proteins require a metal atom to be active. They are known as metalloproteinases. Other proteases have an amino acid known as serine at their active site, and are known as serine proteases.

Some proteases have an amino acid known as serine at their active site.
Some proteases have an amino acid known as serine at their active site.

The initial studies of proteases, in human physiology, were done to discern their role in digestion in the gastrointestinal system. The goal of enzymatic digestion is to break larger molecules into smaller ones. Several proteases work in concert with peptidases to degrade the proteins in foods to small peptides and amino acids. Such small molecules can be absorbed by the intestinal cells and used as fuel or to build new protein molecules.

Enzymes play a key role in the digestive process.
Enzymes play a key role in the digestive process.

One thing all of these digestive proteases have in common is that they are synthesized as larger, inactive forms to prevent the tissue that contains them from enzymatic damage. Such precursors are known as zymogens. Another feature they share is that they are all endopeptidases, although they vary in their preference for which part of proteins they will cleave. This substrate specificity is based on the location of specific amino acids in the target proteins.

The stomach contains the digestive protease pepsin, which is stimulated by the stomach’s hydrochloric acid. Pepsin breaks the proteins into polypeptides, which travel to the intestine. In this location, they are broken into even smaller pieces by the additional digestive proteases trypsin and chymotrypsin. All of these enzymes are serine proteases.

Other types of protease act to regulate the activity of other proteins. By cleaving a specific site on a protein, they can either turn them on or off. This can be part of a mechanism for signaling a physiological change. Another function of proteases is to help in the processing of proteins that are produced in larger forms, such as the amyloid precursor protein. Other proteases degrade proteins that are no longer needed for cellular function.

Discussion Comments

SimpleByte

@Ceptorbi, my mother is a heart patient, and some of her medicines target proteases, too. For example, she takes an ACE blocker to treat her blood pressure. ACE is a protease that can elevate blood pressure. A friend of mind takes a protease inhibitor that targets thrombin, a protease in the blood, to help prevent her from getting another blood clot or having a stroke.

Ceptorbi

@Nefertini, fungal protease inhibitors are also being investigated to help control fungal infections and yeast infections. Bacteria, fungi, viruses, and parasites all contain proteases. An understanding of how proteases function has helped scientists develop drugs to combat some of these disease causing organisms by targeting the proteases.

Nefertini

It's interesting to me that protease inhibitors have been used to treat HIV patients. They affect the protein in the virus that causes HIV and, while not a cure, they do keep the virus from multiplying in the body. However, protease inhibitors also can have some side effects including an increase of fat in the bloodstream and changes in the way fat is distributed throughout the patient's body. Other side effects like nausea and vomiting, a rise in blood sugar, and headaches can also occur.

Post your comments
Login:
Forgot password?
Register:
    • Without protease, the body would be unable to digest the protein in food.
      By: Brent Hofacker
      Without protease, the body would be unable to digest the protein in food.
    • The stomach contains the digestive protease pepsin.
      By: joshya
      The stomach contains the digestive protease pepsin.
    • Some proteases have an amino acid known as serine at their active site.
      By: logos2012
      Some proteases have an amino acid known as serine at their active site.
    • Enzymes play a key role in the digestive process.
      By: graphicgeoff
      Enzymes play a key role in the digestive process.