Science
Fact-checked

At AllTheScience, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What is Positron Emission?

Mary McMahon
Mary McMahon
Mary McMahon
Mary McMahon

Positron emission is a byproduct of a type of radioactive decay known as beta plus decay. In the process of beta plus decay, an unstable balance of neutrons and protons in the nucleus of an atom triggers the conversion of an excess proton into a neutron. During the conversion process, several additional particles, including a positron, are emitted. The positron is a special type of particle known as a beta particle because it is a byproduct of beta decay.

This process of beta plus decay occurs at random all the time in elements with the potential to experience this type of radioactive decay and the energy to transform a proton into a heavier neutron. In addition to producing a neutron, beta plus decay results in the production of a neutrino and a positron. The positron is the antimatter counterpart to the electron, which means that when positrons and electrons collide, they annihilate, generating gamma rays. This property is important for researchers who harness positron emission in their work.

PET scanning highlights radioactive isotopes to display diseases in the body.
PET scanning highlights radioactive isotopes to display diseases in the body.

Radioactive decay causes the properties of an atom to change, because the balance of protons and neutrons in the nucleus shifts. This process explains why an element can exist in multiple forms known as isotopes, with each isotope having a different balance of protons and neutrons. Many isotopes are unstable, experiencing rapid decay and emitting radioactive particles in the process. This process also explains the uneven distribution of elements on Earth, as unstable elements decay into more stable forms over time, leading to a higher concentration of stable elements.

The PET scan uses cameras and computers to construct three-dimensional images of the area of the body being examined.
The PET scan uses cameras and computers to construct three-dimensional images of the area of the body being examined.

The medical community utilizes positron emission for a type of medical imaging study known as positron emission tomography (PET). In this study, isotopes known to produce positron emissions are introduced to the body and followed as they move through the body and produce gamma rays. Isotopes with short half lives which will not cause damage to the body are selected so that the PET scan will not be dangerous, and the imaging study may be combined with other imaging techniques such as magnetic resonance imaging to get a complete picture of what is going on inside a patient's body.

PET scans may be used to locate malignant tumors as well as track growth.
PET scans may be used to locate malignant tumors as well as track growth.

PET scans allow doctors to image functions of the body, perhaps most notably in the brain. The scan is not invasive, providing an appealing alternative to surgery to see the inside of the body, and it can provide a great deal of useful information. Such scans are used in medical diagnosis and in medical research, with positron emission tomography scans of the brain being especially popular for researchers in the field of neurology who are interested in the functions of the brain.

Mary McMahon
Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a AllTheScience researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Learn more...
Mary McMahon
Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a AllTheScience researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Learn more...

Discuss this Article

Post your comments
Login:
Forgot password?
Register:
    • PET scanning highlights radioactive isotopes to display diseases in the body.
      By: grieze
      PET scanning highlights radioactive isotopes to display diseases in the body.
    • The PET scan uses cameras and computers to construct three-dimensional images of the area of the body being examined.
      By: grieze
      The PET scan uses cameras and computers to construct three-dimensional images of the area of the body being examined.
    • PET scans may be used to locate malignant tumors as well as track growth.
      By: Trish23
      PET scans may be used to locate malignant tumors as well as track growth.
    • PET scans can be used for medical diagnosis and research.
      By: Nobilior
      PET scans can be used for medical diagnosis and research.