Category: 

What Is Perlin Noise?

Article Details
  • Written By: Andrew Kirmayer
  • Edited By: Shereen Skola
  • Last Modified Date: 17 September 2016
  • Copyright Protected:
    2003-2016
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
The U.S. Coast Guard led the evacuation of more than 500,000 people from Lower Manhattan on 11 September 2001.  more...

September 27 ,  1940 :  The World War II Axis powers formed with the signing of the Tripartite Pact.  more...

Perlin noise makes use of a partially random series of numbers which are computed into an image. Two- and three-dimensional images created this way are intended to mimic natural objects such as the sun, clouds, and marble, for example. The concept was created in the mid-1980s by Ken Perlin, a computer science expert and college professor still as of 2007. It provides relatively smooth random functions compared to the capabilities of typical programming languages. Control for small scale as well as large-sized elements are possible.

Graphics rendering programs make use of Perlin noise. At the programming level, the simulation noise is computed using mathematical formulas. These complex formulas are used to generate graphics in one, two, or three dimensions. Various parameters are numerically defined in an equation. The number representing the noise value, along with the sum of other values, results in a graphical line in the first dimension.

In two dimensions, a computer-generated visual effect uses numerical values less than an image’s resolution, particularly a gray-scale image. Perlin noise can also be visualized in three dimensions. Textures of objects on a computer screen can be analyzed beyond just one side and at any point on the surface. These points can be moved to produce a rotating image, and various functions can be computed to change the image texture. This helps in the imaging of rectangular images and translating them to spherical representations.

Ad

Perlin noise can be used in the creative process using the same methods. It is used in animation, as the same principles can be applied to animated characters so their motion appears smooth. Realistic looking clouds as well as terrain can also be created from both a ground perspective and from above. Color and texture can also be added, so Perlin noise is beneficial for creating detailed simulations and images that are either abstract or realistic.

Computer programs control the value noise, so the user does not need to understand the mathematical concepts involved. One program uses an algorithm for choosing an input point, picking a gradient vector for nearby points, and calculating additional gradients. Calculations using coordinates then derive the image’s scale, and patterns repeating into smaller variations can be created to simulate the nature of a fractal landscape. Changing the scale of such patterns means making use of a numerical scaling feature called octaves. Various computer programs help to render detailed images based on numerical calculations that would take too long for a person to perform manually.

Ad

You might also Like

Recommended

Discuss this Article

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email