Category: 

What Is Membrane Filtration?

Article Details
  • Written By: Mary McMahon
  • Edited By: O. Wallace
  • Last Modified Date: 25 August 2014
  • Copyright Protected:
    2003-2014
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
Bill Clinton met John F. Kennedy when he was 16.  more...

September 2 ,  1666 :  The "Great Fire of London" burned down more than 13,000 buildings, including St. Paul's   more...

Membrane filtration is a technique which is used to separate particles from a liquid for the purpose of purifying it. This filtration method has a number of applications, ranging from treating wastewater to filtering milk used for cheese production, and there are several different approaches to membrane filtration. In all cases, the goal is to create a filtered solvent. A number of different types of systems are available from companies which specialize in filtration products, along with replacement membranes and other parts and equipment.

In membrane filtration, a solvent is passed through a semi-permeable membrane. The membrane's permeability is determined by the size of the pores in the membrane, and it will act as a barrier to particles which are larger than the pores, while the rest of the solvent can pass freely through the membrane. The result is a cleaned and filtered fluid on one side of the membrane, with the removed solute on the other side.

Nanofiltration, ultrafiltration, microfiltration, and reverse osmosis are all membrane filtration techniques. In all cases, the size of the pores has to be carefully calculated to exclude undesirable particles, and the size of the membrane has to be designed for optimal operating efficiency. Membranes are also prone to clogging as the pores slowly fill with trapped particles, which means that the system must provide accommodations for easy cleaning and maintenance so that it can be kept in good working order.

Ad

Many membrane filtration systems are designed for industrial uses. One of the big advantages to such a system is that it does not require the use of chemicals or additives, which cuts down on operating costs. Additionally, it requires minimal energy, and it can in fact be designed to run on almost no energy, with a pressurized system which takes advantage of gravity and forces the solvent through the membrane at a steady rate.

Successive membrane filtration, in which the solvent passes through a series of membranes, is very popular. In this approach, the pores get progressively smaller, removing more and more impurities from the fluid. This technique reduces clogging of the system as the solvent is slowly filtered, and it carries the added advantage of fitting into a compact space, because the membranes can all be very small and still work efficiently.

Waste management, industrial food handling, medicine, and laboratory science all have uses for membrane filtration systems. These systems are generally easy to use, although they must be maintained properly in order to be effective.

Ad

More from Wisegeek

You might also Like

Discuss this Article

anon160037
Post 4

which equipments are used in this process?

Kalley
Post 3

@jerry70 – One example of how membrane filtration can be used to improve food quality is with microfiltered milk. Rather than improving milk quality by heating it, as with pasteurization, microfiltering separates milk proteins away from each other, which reduces the presence of bacteria and makes milk safer to drink. This process doesn’t change the milk’s taste, however, and it also gives milk a longer shelf life. Eventually, we will be able to store milk at room temperature for six months because of this process.

jerry70
Post 2

I find it interesting that membrane filtration can be used to improve food quality. How exactly does that work?

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email