Category: 

What is Codominance?

Article Details
  • Written By: Mary McMahon
  • Edited By: Kristen Osborne
  • Last Modified Date: 02 December 2016
  • Copyright Protected:
    2003-2016
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
President Richard Nixon had an entire speech prepared in case the Apollo 11 astronauts became stranded on the Moon.  more...

December 8 ,  1965 :  Pope Paul VI promulgated Vatican II into ecumenical law.  more...

Codominance is a genetic trait where both of the alleles for a gene are equally strong, resulting in both being expressed simultaneously. This is sometimes confused with incomplete dominance, a phenomenon where the traits blend in their expression, as each trait expresses distinctly. In a simple example to differentiate the two, if a blue and yellow flower are crossed and a green flower develops, this is incomplete dominance. If the cross results in a yellow flower with blue spots, the traits for yellow and blue will express at the same time in codominance.

This trait has important implications for a number of inherited characteristics. One of the most famous is the ABO blood grouping system. A person can inherit two alleles for A blood, resulting in an A blood type, or two alleles for B blood, developing a B blood type. If one of each is inherited, the person doesn't have a blend of A and B, the patient has AB blood, expressing both alleles at once and demonstrating codominance. Conversely, neither A nor B alleles may be inherited, resulting in type O blood.

Ad

Understanding patterns of dominance and recession is a key aspect of genetics. People involved in breeding organisms must think about the patterns of genetic inheritance when selecting for specific desirable traits or attempting to eliminate bad ones. One result of codominance in animals and plants can be interesting color and coat patterns. People breeding chickens, for instance, might cross black and white birds to develop barred or spotted chickens, since the alleles for these colors are codominant. Likewise, tabby coats in cats are a result of codominance, caused by simultaneous expression of two different alleles.

In order to determine if a trait is dominant, recessive, or some variation thereof, people need access to records on multiple generations so they can follow the trait and see how it changes over time. In the example used in the first paragraph, researchers could track several generations of blue and yellow flowers and their offspring to see if the traits are codominant or incompletely dominant.

They might also find that one trait, like yellow, is dominant, with that trait always expressing when a flower inherits one blue and one yellow allele. In that case, the blue color pattern would be a recessive, with a flower needing two blue alleles to appear blue. Crossing blue flowers would always result in a blue offspring, but crossing a blue and yellow flower could result in a mix of blue and yellow offspring, unless the yellow flower had two yellow alleles, in which case all offspring would be yellow.

Ad

You might also Like

Recommended

Discuss this Article

anon943535
Post 2

In humans, there are only three or four traits that are still thought to be simple dominant recessive with only two possible alleles.

werterful
Post 1
Usually there are only two options or alleles for a gene; multiple alleles are when there are more than two. So for multiple alleles there has to be three or more options for the gene. This is different from what Gregor Mendel hypothesized. He theorized that there were just two alleles for every gene expression. However we now know that there can be more than two alleles for some genes. Of course each person can have no more than two alleles for every gene even though there may be more than two options.

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email