Category: 

What Is an Electromagnetic Pump?

Article Details
  • Written By: Jordan Weagly
  • Edited By: Angela B.
  • Last Modified Date: 14 September 2016
  • Copyright Protected:
    2003-2016
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
The atmosphere of Jupiter's moon Io collapses every time it is eclipsed by the planet.   more...

September 29 ,  2008 :  The Dow Jones Industrial Average experienced its largest one-day drop in history.  more...

An electromagnetic pump is most often a device that uses electromagnetism to create flow in magnetically charged materials such as liquid metal. These kinds of pumps can be useful for many materials, including non-metal elements such as potassium. One important function of these pumps is to cool nuclear reactors, though some other applications can be considered common. Magnetic fields used to create flow have some significant benefits over mechanical pumps. Different types of pumps might be used in specific situations because of the benefits they offer.

In general, magnetic fields are created inside an electromagnetic pump using permanent magnets or electromagnets. To achieve the required flow, high electrical currents or temperatures must be established. The magnets can be configured to create a specific directional flow, depending on the application. Materials that are often considered difficult to handle, such as liquid metal, will usually flow in a predictable and continuous direction inside an electromagnetic pump.

Common materials passed through an electromagnetic pump include metals such as aluminum and mercury. Other magnetically charged elements passed through an electromagnetic pump can include zinc, sodium and potassium. Different elements usually require different pump configurations and temperatures. They also are used for specific applications.

Ad

Electromagnetic pumps are often used to cool nuclear reactors. Extreme temperatures in nuclear environments often require high-tolerance cooling mechanisms, and an electromagnetic pump is considered best in such situations. Magnetic fields also can be used in foundry work, where high-temperature metals must be poured or otherwise transported from one location to another. In this regard, an electromagnetic pump also can work as a flow meter when mechanical devices might be insufficient.

Despite the specific requirements that can create flow in these materials, there are common advantages that electromagnetic pumps have over mechanical pumps. There are often no moving parts required to create material flow, so there is little resistance and less stress on the machinery. This unrestricted flow can be considered more reliable than many other methods and has been shown to last in high-stress situations for extended periods.

Variations of the electromagnetic pump process can include direct current conduction, alternating current (AC) conduction and linear induction. Direct current conduction pumps are often used for high-temperature situations and require high amounts of power. Alternating current conduction pumps depend on AC power and produce flow using transformer configurations. Linear induction pumps also use AC power passed through specific magnetic windings to create a traveling magnetic field that creates flow.

Ad

You might also Like

Recommended

Discuss this Article

hamje32
Post 4

@miriam98 - I think liquid metal is used in the reactors as part of the cooling mechanism. This is where the pumps would come in.

miriam98
Post 3

@MrMoody - How does the electromagnetic pump benefit the nuclear reactor exactly? I know that it’s used to cool it, but what does that have to do with magnetism? Is there any oozing metal that needs to be pumped in the process?

MrMoody
Post 2

@David09 - If you needed more power you’d probably use the AC conduction rather than trying to wrap more wires around the magnet, I think.

These are supposed to be high powered pumps. You’d need maximum voltage to generate the magnetism needed for those kinds of situations.

David09
Post 1

It’s a smart idea. Frankly I can’t think of a better way to move liquid metal. Metal in this form is likely to move very slowly, just oozing along, and so a traditional electromechanical pump would work hard to get the job done. An electromagnetic pump makes more sense.

The only thing is depending on the weight of the liquid metal you would probably need very strong electromagnets to pump it along. However, I think this should not be a problem.

You can easily adjust the magnetism by adding extra layers of wiring or stuff like that; whatever they do to make the magnets stronger.

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email