Category: 

What Factors Affect the Hardness of Carbon Steel?

Article Details
  • Written By: Jeremy Laukkonen
  • Edited By: Andrew Jones
  • Last Modified Date: 05 September 2016
  • Copyright Protected:
    2003-2016
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
Although Stonehenge is the most famous, there are over 1,000 ancient stone circles standing in the British Isles.   more...

September 26 ,  1960 :  The first televised US Presidential debate took place.  more...

The hardness of carbon steel can be affected by a number of different factors, including the carbon contact, the amount and type of other elements in the alloy, and the specific processes used to create the steel. Low carbon steel, which contains between 0.05 and 0.25% carbon, is typically the softest variety, though it can be hardened through a process known as carburizing. Ultra-high carbon steel, which can consist of up to 2% carbon, is typically the hardest type, though the final hardness of each product is also determined by various heat treatment processes. Quenching processes can increase the hardness of carbon steel by a factor of about four, though subsequent tempering typically lowers the hardness.

Carbon steel is an alloy that consists primarily of iron and carbon. Other elements may be present as well, typically in very small amounts. There are a few different definitions of what exactly constitutes carbon steel, though elements such as silicon and copper typically account for less than 0.6% of various alloys. Some carbon steel alloys can also have up to 1.6% of elements such as manganese. Since there are a number of different alloys that are all commonly referred to as carbon steel, each type tends to have a different hardness.

Ad

The primary factor that affects the hardness of carbon steel is the amount of carbon present in the alloy. Low carbon steels tend to be the softest, while ultra-high carbon steels can be quite hard and brittle. It is also possible to change the physical characteristics of carbon steel through various treatments, either to increase or reduce the hardness.

Even though low carbon steel is relatively soft, a process known as carburization can cause it to become harder. This heat treatment process actually causes the alloy to absorb additional carbon from solid, liquid, and gaseous sources such as charcoal and carbon monoxide. The carbon is typically only absorbed into the surface of the metal, which results in a case hardened outer layer and a softer, ductile core.

High content carbon steels tend to be very hard to begin with, but quenching processes can make them even harder. If a carbon steel alloy is too hard though, it will typically also be quite brittle. Some exceptionally hard alloys are actually subjected to quenching and tempering processes that can reduce the hardness of carbon steel, and increase ductility. Other processes, such as annealing, can also effectively increase the ductility and decrease the overall hardness of the steel.

Ad

You might also Like

Recommended

Discuss this Article

Euroxati
Post 2

@Chmander - To answer your question, re-read the last paragraph of the article. Whether we're dealing with "normal" buildings, or fortified areas, it's easy to assume that the carbon steel can't be too hard, as that will lead to several issues, such as being way too weak and fragile.

Chmander
Post 1

Considering how there are many factors that can affect the hardness of carbon steel, how solid can it truly get? The reason why I'm asking is because I'm assuming that in some fortified places (as an example), when they make the steel doors, they have to make it as tough as possible in order to keep intruders out. I hope I'm not getting off topic, but it's still something to consider, especially with what the article discusses.

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email