Category: 

What Are the Steps of Protein Synthesis?

Individual cells construct proteins.
Using a process called transcription, DNA makes a functioning copy of itself called ribonucleic acid (RNA).
DNA transcription is the first step of protein synthesis.
Article Details
  • Written By: Daniel Liden
  • Edited By: Jenn Walker
  • Last Modified Date: 21 November 2014
  • Copyright Protected:
    2003-2014
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
The oldest known tortoise is 182 years old, and is believed by scientists to be the oldest living land creature.  more...

November 23 ,  1936 :  The modern version of "Life" magazine published its firs  more...

The steps of protein synthesis, the process by which genetic information is converted into proteins, are transcription, translation, and in some cases, posttranslational modification and protein folding. Proteins are functional biological units composed of folded biochemical chains that are involved in almost every chemical process that takes place within the body, including immune response, digestion, and cell growth. They also play a structural role in many organisms and are responsible for maintaining the shapes and positions of many cells, tissues, and organs. Different proteins must be produced in correct ratios with correct timing, so it is important that the steps for synthesizing them run in a coordinated and precise manner.

Transcription is the first of the major steps in making proteins. In transcription, genetic information in the form of double-stranded deoxyribonucleic acid, or DNA, is "read" by a group of proteins that create a single-stranded ribonucleic acid, or RNA, transcript. Proteins begin and end the process of transcription at specific points on a strand of DNA based on the genetic information encoded in the strand. The specific start and stop points determine the identity of the protein that will later be produced. The DNA strand is preserved in transcription, so many RNA transcripts can be produced from a single DNA strand.

Ad

The next of the major steps of protein synthesis is referred to as translation, which is when the protein itself is produced; the other steps involve either producing the transcript that contains information for the protein or modifying the protein after it is produced. In translation, the RNA transcript is surrounded by ribosome, or the "protein factory" that "reads" the genetic information on the transcript to produce a polypeptide chain. This chain, before folding, is simply a string of amino acids. Either spontaneously or with the assistance of other proteins, the amino acid chain later folds and takes on the three-dimensional structure from which the functions of proteins are derived.

Although the protein is produced in translation, sometimes there are further steps necessary for protein synthesis that ensure that the protein is well suited for its eventual purpose. Protein folding, for example, is generally not completed until after translation is complete. Additionally, in some cases, other proteins perform chemical modifications on the newly-produced unit. These alterations tend to change the three-dimensional structure of the protein, thereby altering its function. Other forms of posttranslational modification also may reversibly activate or deactivate the newly produced protein.

Ad

More from Wisegeek

You might also Like

Discuss this Article

Charred
Post 2

@NathanG - The steps to protein synthesis leave no room for error, from what it appears. Unlike human transcription, molecular transcription would have to be 100% accurate, and there would be no errors in translation either.

I agree with you – it’s amazing to think that all of this activity is taking place, seemingly without any direct intelligence guiding it along. I have new respect for the process that takes place whenever I eat a meal!

NathanG
Post 1

Coming from the world of software development, I am absolutely amazed every time I read one of these articles about the world of molecular biology.

I never thought I’d come across the concept of transcription in an article about human protein. Reading about DNA protein syntheses reminds me of a “copy and paste” operation in the computer world.

I know it sounds weird, but these are the parallels I draw in my mind. The precision is amazing. I sometimes wonder if we simply develop our technological concepts and paradigms from design patterns we discover in nature.

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email